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THREE-DIMENSIONAL MODEL OF TIDES AND STORM SURGES IN A SHALLOW
WELL-MIXED CONTINENTAL SEA ‘
Jacques C.J.NIHOUL )

Universities of Ligge and Louvain, Belgium
ABSTRACT

A three~dimensional "long waves" model is discussed for the
study of tides and storm surges in ‘a shallow well-mixed continen-
tal sea. Emphasis is placed on the North Sea where tidal and storm
currents constitute the essential part of the circulation and esti-
mates from observations in the North Sea and, more especially, the
"Southern Bight are used to assess the relative importance of diffe-
rent effects and derive a simple set of'equations by which vertical
profiles of tidal and storm currents can be predicted, at each

points, as functions of time.

INTRODUCTION

'-Although depth-integrated two-dimensional models of marine cir-
culation are now very well established, ve}y little has been done
sofar in the development of.three—dimensioﬁal models. This is due,
in particular, to the difficuity of‘éolving three-dimensi&nal time
dgpendent equations and providing appropriate boundary conditions

for thenm.

However, in the case of long waves in a shallow sea (tides and
storm surges, with a characteristic horizontal length scale much
greater‘than the depth), horizontal turbulent diffusion and non-
linear horizontal advection are usually small‘compared to time va-
riations, pressure and surface elevation gradients, Cofioli; accele-
ration and vertical turbulent diffusion. This is not true every-
where : near amphidromic points for instance (e.g. Ronday 1976), ty-
pical length scales of horizonfai variations of the tidal field may
be much smaller than the tidal wave length, But apart from such
"singular" localized area, the three-dimensional equations descri-

bing the long wave circulation in the sea reduce with a good



approximation to the claésical Ekman equations where only derivati-

" ves with respect to time and the vertical coordinate appear.

This has.led several authors (e.g. Jelesnianski 1970,
Forristall 1574) to examine the possibility of combining a two-
dimensional depth-integrated model with a locally one-dimensional
Ekman model to simulate the general depth-mean circulation in the
sea as well as the vertical variations of velocity, turbulent

stresses, etc..

In the North Sea, Nihoul and‘Ronday (1976) have shown that a
correct reproduction of tides and storm surges - including amphi-
dromic and near coast areas - and subsequent residual currents re-
‘quired a non-linear depth—integratea two-dimensional model even if,
in most places, the linear one-dimensional model on which the stu-
dies by Jelenianski and Forristall are based (Jelenianski 1970,
Forristall 1974) could be regarded as a locally SAtisfactofy appro-
“ximation. ‘ )

" Models appropriate to the description of the North Sea depth-
integrated circuiation have been developed by several authors and
are now well documented (e.g; Leendertse 1967, Heaps 1969, Nihoul
and Ronday 1976, Nihoul 1975, 1976, Ronday 1976).

One of the main problems arising in these models is the para-
meterization of the bottom stress. Indeed integration over depfh
_iﬁtroduces, in the hydrodynamic equations, the surface stress and
the bottom stress and, while the former can be_evalua;ed from at-
mospheric data, the latter must be parameterized in terms of the
mean or depth-integrated horizontal velocité.introducing an empi-.
rical drag coefficient. In general, one sets (e.g. Groen and
Groves 1966, Heaps 1967, Ronday,l976)

1, =-m 1, +Duuylf = (1)
where Th and 1, are respectively the specific bottom and surface

stresses (stresses divided by the specific mass of sea water) and

where m and D are two empirical coefficients (D is the drag coef-

ficient).
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The parameters m and D must be adjusted not only to have the

right magnitude of T, but also the right direction. One notes

that eq. 1, if used zith constant m and D, 'introduces a rather se-
vere assumption on the relationship between the direction of the
bottom stress and that of the mean flow velccitybg. An error at
this stage might seriously affect the final prediction of the mo-
del and several authors have stressed the need of: tﬁree dimensional

modelllng if only to assess the 11m1ts of valldlty of eq. 1.

Using Ekman theory, Welander (1957) suggested that the bottom

stress could_be determined from the local time-histories of the

wind stress and the surface slope by means of an integral operator

" in the form of a ccnvolution integral. Jelesnianski (1970) used

"this approach to calculate bottom frlctxon in his study of storm

surges, Gedney and Lick (1972) used it to calculate steady state
current profiles in Lake Erie and Forristall (1974) presented a

study of hurricanes in the Gulf of Mexico based on a model using a

. .
iuite difference scheme on the imtegrated equations of tion feol-
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- lowed by an evaluation of convolution integrals over the sea slope and wind

stress to calculate current profiles at selected points in the grid.

These very elegant studies, unfortunately, had to assume a
constant vertical eddy viscosity coefficient. This assumption crea-
tes difficulties with the formulation of the bottom boundary condi-

tion (e.g. Jelesnianski 1970) and can only give a rather inadequate

'representation of the bottom'boundary layer. Thus, having the pa-

rameterization of bottom friction particularly in mind, it has

seemed interesting to try to improve .the model in this respect.

In the North Sea, in typical weather.couditions, the observa-
tions indicate that the vertical eddyvviscosity is a function of |
the depth, increasing first_linearl& with height over the bottom
and then flattening out in the upper layers following some form of
parabolic curve. (e‘g. Bowden.1965' Ronday 1976). This is obviously .
in relatlon with the exlstence near the sea floor of a logarithmie
bottom boundary layer of whlch there is now ample experimental evi-

"dence (e.g. Weatherly 1977).



" One of the demands upon three-dimensional models of the
North Sea is thus to take into account the variations of the eddy
viscosity with depth in a realistic way, respecting the linear

asymptotic behaviour observed near the bottom.

The method proposed in this paper; to answer this pﬁrposé, is
baéed on series expansions of (dodified) Ekman variables in eigen-
functions of the vertical turbulent diffusivity operator. This
method is somewhat similar to that used by Heaps in an earlier very
attractive endeavour of three-dimensional modelling of the Irish

Sea (Heaps 1972, 1976).. However the setting there was’different

.and, in particular, a constant vertical eddy viscosity coefficient

was again assumed.

With this method, an analytical solution of Ekman equations
(with variable eddy viscosity) can be formulated in terms of the
wind stress, the vertical mean current and the associated surface
elevation. A simple iteration procedure is proposed to take into
acount non-linear advection terms, neglected in Ekman equations, in

the regions where they may be important,

The final result is a three-dimensional model of tides and
storm surges composed of a depth-integrated two-dimensional model
éoupled,~ through a new formulation of the bottom stress, in parti-
cular - to a locally one-dimensional model by which the vertical

profiles of tidal and storm currents can be predicted.

THREE-DIMENSIONAL EQUATIONS FOR TIDES AND STORM SURGES IN A WELL-

MIXED SHALLOW SEA

The three-dimensional equations describing tidal and storm
currents in a well-mixed (constant density) shallow sea are Fair-
ly classical. _If u = (ul T P u3).is the velosity vector, u,
denoting the vertical component énd thé vértiéal axis pointing up-
wards, they can be written, (e.g. Nihoul 1975) =

you=20 . (2)

du P. ‘ : " du : .

—L + u.vu, - fu, = 2 (—5 + g} + —3—«(53;1) . ' (3)-
3 :

ot - »1 2 axl p 8x3



Ju P.. du
2 ) a ) ~" "2y
T * u.Vu, + fu, 3;;(;— + g;) + 7, (°3x3) (4)

where f is twice the vertical component of the earth's rotation
vector, p, is the atmospheric pressure, p the specific mass of
sea water, { the surface elevation and v the vertical eddy visco-
‘sity. '

- In these equations, the quasi-static approximation has been
used to eliminate the pressure, the effect of the horizontal com-

onent of the earth's rotation vector (multiplied by u., << u, or
P 3

1
u2) has been ignored and the horizontal turbulent diffﬁsion of
momentum has been neglected as compared with the vertical diffu-
sion , taking into account that horizontal length scales are much

larger than the depth.
If
Xy = L : and X3 = - h . (5) (6)

are the equations of the free surface and the bottom, respectively,

‘it is convenient to change variables from (x1 s Xo 5 Xq t) to

(xl s Xy £ , t) where
x, + h
£ = 2 . (7

H here is the total depth, i.e.

H=h+ g - : (8)

The definition of the auxiliary variable £ is reminiscent of the
well-known o-transformation used by several authors (e.g. Freeman
et al 1972, Durance 1976) but it is, in reality, only one part of
“it, as, for instance, one does not make use, in the following, of
the o-ﬁertical velocity which, in the present hotation,woulq be

given by %% .

The purpose of eq. 7 is to transform the variable range of
vertical variatioms (-h' < X4 i ) into: the fixed‘range (0 <€ < 1)
which is better adapted to the determinatibn of the eigenfunctions
of the vertical turbulent diffusion operator which will be needed

later.



Strictly speaking, the new variable ¢ varies from some very
small value £, = %2 to 1, where z is the so-called "rugosity
length". 2, can be visualized as the distance above the bottom
where the velocity is’conventional;y set equal to zero, ignoring
the intricated flow situation which occurs near the sea floor and
willing to parameterize its effect on the turbulent boundary »
layer as simply as possible (e.g. Nihoul 1977). 1In the North Sea,
the value of z, ; which varies according to the nature of the

bottom, is of the order of 10—3m (1n Eo ~ - 10) (Rorday 1976).

Although g << 1 , it cannot be set equal to zero because,

as mentioned before, the linear variation of the vertical eddy vis-

cosity near the bottom, leads to a‘'logarithmic velocity profile

which is singular at § = 0. However, one shall see in the follo~
w1ng that the 31ngu1ar part of the proflle can be sorted out by

an appropriate change of variables, and that the new variables can
be expanded in series of eigenfunctions of the vertical turbulent

diffusion operator in the range 0 < & < l.

In . brief, the lower 11m1t of ¢ w111 be taken equal to zero as

long as it does not create a 51ngu1ar1ty.

Changing variables from (xl » Xy i3 , t) to (x] s Xo o £, t)

the first two ‘terms of the left-hand sides of eqs. 3 and &4 become

aui : _ ;
3T + Ai + Bi + Si | i=1, 2
where-
. 3ui Bui
Ai. = ul H-]— + u2 -8—;; ‘ 1 = 1, 2 (9)
Ju
-1 i 3h 3h _
B1 = H 5E (1 £)( TN u, 3x2 + u3) i=1, 2 (10)
a'u
! Cay 25 N 1
s; = B 57 &l - up ax; (uyg = uyp) 7%
—(u3sfu3) , _ i=1, 2 (11)

and where the relation



3t 4+ . 3c+.az

2t Y1s ax, Y2s ax, = Y3s at x, = g (12)

has been used, the subscripts denoting surface values.

The conditions under which the terms A, B and S - which are

generated by the time derivative as well as by the non-linear ad-

vection terms - can be neglected in the case of the North Sea, are

not obvious.

(The situation here is different from the studies of Jelesnianski
(1970) and Foristall (1974), for instance, where the equations
being linearized to begin with, a o~type transformation cannot gene-

rate any term of importance.)

To estimate the orders of magnitude'of the non-linear terms A,
B and S, one must have some, even rough, idea of the vertical profi-
le of the velocity and, for that purpose, one can presumably take

Van Veen's profile (u = u g°°2, Van Veen 1938), which is probably

not too good in the immediate vicinity cf the bottom but apnears to
reproduce satisfactorily the observations in many cases (e.g. Bowden

1965, Nihoul 1975).

Now, the function (1 - 5)50'2 appearing in B is zero at the
surface and at the bottom. Its larger values occur near the bottom
(it has a maximum ~ 0.6 for £ ~» 0.17). The function g(l - g )
appearing in S is more evequ;Qistributed over the water column but

it":émains small everywhere (it.has a maximum ~ 0.06 for E ~ 0.4).

Comparing A and S (noting that u and 7 have the same characte-

ristic length of horizontal variations) one finds

S - 70.2, ¢
v E(} 1 ) q

Even in very shallow coastal zones, this can only be a few percents
\
and one may reasonably neglect S as compared to A.
Dealing with long waves, one may associate to the time varia-
tions and the horizontal space variations of the velocity field a

-4

typical frequency w(w ~ 10 n f) and a typical wave-length c/u

where ¢ is the phase velocity.

Observed values of the phase veloc1ty exceed 10m/sec even in

shallow coastal areas (note that /gH gives 10m/sec for H only



10 meters). Maximum values of the flow velocity u are of the order

of Im/sec (e.g. Ronday 1976).“The non-linear advection term A (and

~a fortiori S) is thus generally negligible as compared to the time

derivative ; the two terms being in the ratio u/c.

This might not be true in some places, near amphidromic points,
for instance where the characteristic length of horizontal rariations
of the velocity field could be smaller than the wave length. 1Its
smaller value however is the grid size, because onelcannot introduce
in the model variations at scales which are meant to be smoothed out.
Still, with a grid.size of, say, 10 kms, A could be one otder of ma-
gnitude larger, comparable with the time derivative. There are thus
localized areas, where the non-linear terms cannot be negléc;éd.
Depth-integrated two-dimensional models cannot reprodtuce correctly
the tide and storm surge characteristics over the whole North Sea
without retaining the non-linear terms.’ (It can be shown that these
terms are also necessary if one wants to model the residual circula- y
tion (Nihoul 1975, Nihoul and Ronday 1976)). However, if one excepts
"singular" regions like amphidromic points, it seems reasonable to
neglect A in the determination of the local vertical profile of the

velocity.

The characteristic length of variations of the bottom topography

h(xl, x2) is not related to the wave-length c¢/w. It cannot however

‘be smaller than the grid size for the same obvious reason as before.

For a 10 km grid size, each term composing B can be comparable to the
time derivative. However, as shown previously, B is essentially .im-
portant near the bottom where one may expect the streamlines to fol-
low the bottom topography fairly closelyr In that case, the three

terms may be expected to nearly cancel each other, i.e.

w, 2B 4y 3h o u,n o0 near the bottom v (13)
1 axl 2 3x2 3 . :

In the following, counting on a grid size of some 10 km and assuming

that the departure of the left-hand side of eq.13 does not exceed 10 2

of the value of the individual terms, one shall neglect B as compared
Ju

to =¢ - One should be aware, however, that, in finer grid models, for

coastal studies for instance, B might be more important and, indeed,
turn out to be the essential contribution of the non-linear terms to

include by priority in the models.



More details about aumerical values and orders of magnitude charac-
teristic of the North Sea can be found, for instance, in(Ronday

1976).

' Changing variables from X, to £, the last terms in the right-

hand sides of eq. 3 and eq. 4 become

« Ju
-2 3 ~ i .
foag O ) ~ P2

Observations indicate that the eddy viscosity v can be expres-
sed as the product of a function of t, X and X, and a function of

¢ (Bowden 1965). 1If one sets

S - oce, xp, %A S | (14)

and neglects the non-linear terms according to the discussion above,

one can write eq. 3 and eq. 4 in the simple well-documented form

Jdu p du
1 _ _ _29 a 9 1 :
5t - fu, = ;;T (F— + gL) + o AT (A 3?—) : (15)
du P. - Ju
2 - -2 (2 . o =2
-t fu = 7%, (— + gg) + ¢ 57 (A 5E ) (16)

One emphasizes that these equations, although valid for the
most ﬁart of the North Sea, are not applicable in localized areas
where - the non-linear terms are important. In such "singular" regioné,
however, their solution can be used as described bélow, to initiate
an iteration process in which the non-linear terms are regarded as
driving forces. The combination of eqs. 15 and 16 (or higher itera-
tion forms of them) with a depth-integrated two-dimensional model
will provide the elements of a three-dimensional model by which, at
each great point, surface elevation, vertical mean current and ver- .

tical profile of the velocity can be predicted}

LOCALLY ONE-DIMENSIONAL MODEL OF THE VERTICAL VARIATIONS OF THE
HORIZONTAL CURRENT ‘ ‘

Let

u =~uj + iy, | (17)



1o

~ du  _ ou “
T \)-a-x—:s--.OHX——aE | ’(18)
p : P, .
= - 9 (-2 -3 8 (-2 : ‘
¢ 7%, G=+s82) -1 7, (5— *+ &%) : (19)

~eqs. .15 and 16 can be combined into the single equation

Ju . 3 Ju .
s tifu=29¢+0 3F (2 —E) _ (20)

The forcing term ¢ i; a function of ¢t, X, and X Hence, al-
though the dependence does not appear explicitly in eq. %P, u must
be regarded as a function of £ , t , X, and Xy At any given point
X} » X, , eq. 20 provides a locally one-dimensional model of the

vertical distribution of u as a function of time.,

If Té and Ty denote the values of t at the surface and at the
bottom respectively, the depth-averaged velocity u is given by the

equation

<l

3

l

+ i fu=29 +4(Ts - Tb) H-l | (21)

Q
(a4

and the deviation'd = u - U is given by

3G . . . - _ _[d 3d Ts 7 Tp
'5Ev+ if4-= O{EE @) gg) ‘—-jﬁ;-} (22)

The vertical profile of the eddy viscosity v may be different
in different circumstances but it is generally admitted that, in any

case, its asymptotic behaviour for small £ is given by

~ ‘ 1/2
v = K bel

(x3 + h) (23)
where ¥ 1s an appropriate constant which, according to observations
in the North Sea, may be taken as the classical Von Karman ¢onstant

of turbulent boundary layer theory (e.g. Ronday 1976).

Combining eqs. 14 and 23, one can see that oH must be propor-
tional to KlTblllz . There is no lack of generality in taking the
constant of proportionality equal to 1 (the functions g and A are

only defined By their product). Hence



oH = K|Tb|]/2 : (24)

and
A(E) ~v & ' for small ¢ (25)
Cﬁanging variables to w and y defined by -
~ _ -ift Ts Tb
i =we * SH s(g) + SH b(&) (26)
. t ‘
y = f g(v)dv : (27)
0 .
where
£ n
s(g) = JE Ty dn | (28)
o
. £ : :
= l1-n | |
)

eq. 22 can be written

v, o - _ 2 (2

3y * 05 s(8) + 0y b(E) = ag(* ag) . (30)
~where

. i ft T . T

= & 24 oy 22 (i ft @ -

0, = —%— Gr * 1D (G ay(e 5 @« = s, b (31)
,with'the boundary conditions

X'%%‘= O at £ =0 . and £ = 1 | (32)

If the vertical profile of the eddy viscosity is known s and
b are known functions of £. Eq. 30 allows then the determination

of the vertical profile of the velocity in terms of ¢ , H , es and
"
of y .

VERTICAL PROFILE OF THE HORIZONTAL CURRENT

Introducing the Laplace transforms

W(a,&) = fw e Vu(y,E)dy (33)
0 .

which - at any given point X} » X, = are functions of t dnd thus

11



@, () = [ ™o (y)ay a=s, b (34)
B .

eq. 30 can be transformed into

: _d dw
al + @ s(e) +Q, b(e) - w () = FF O FF) (35)
with the boundary conditions
» =0 at £ = 0 and £ =1 (36)
& |
Let now a series of functions £(§) (n =0, 1, ...) such that
d df ‘
'a-g (A TE—‘) = - an fn ’ n = 0, l, 2,..' (37)
df_ |
A ol 0 at £ =0 ‘ and £ = 1 (38)
&
The an's being appropriate eigenvalues with a = 0.

- It is readily seen that these functions are orthogonal on (o, 1).
They can be further normalized by imposing

l .
[ £2 de =1 (39)
n .
0
It is tempting to seek a solution of eq. 34 in the form of a

series expansion in fn(g).

Let thus
W o= g c £_(&) (40)
w, o= g Wy fn(E? ‘ ‘ : (41)
s ='§ s, £,08) (42)
b = g b £ (&) | (43)



The coefficients w_ , s_ , b_ are known if A(£) and thus s(&)

n n n
and b(g) are known. The coefficients c are determined by egq. 35.
~ One finds '
mn-sn@s—bn@b '
c_ = (44)
n a + o
n
Hence
-1 » TenY 8 b :
w -»}C W = é {wn e - s Rn - bn Rn}fn(i) ‘ (45)
where
y ~a_(y-y")
R = [ 6 (y') e © dy' a=s, b (46)
n o ©

From eqs.37 and 38, it is readily seen that

1 - .
[ £.(e)de =0 : n >0 (47)
0

and that fo is a constant so that the first terms in the series
expansions 40, 41, 42 and 43 represent the depth-mean values

of the corresponding functions.
Combining eqs. 26, 31 and 45, one then obtains

T

(b(e) - B) | (48)

2
ml o

(s(g) - %) +

c
n
Qla

e 1)

o -0y .
n s . b -i f¢t
+ f {wn e s, R, = b Rn} £.(8) e’
Here s and b represent the depth-averaged values of s and b and the
condition that the depth—averaged value of 4@ must be zero has been

used to eliminate Wy .

By successive integrations by parts, one can write, using eq. 3!

© dPo Y)Y -q y
a a e n -
R™ = I roal B a = s, p
n p=0 dyp oP :
n n=l’2000
0 .
© q ei £ tr ~o_y q e.f te (49
= r{a"94d -t e Md (Y
q=] n dyq oH - n dyq.v g



~Using eq.‘24 and typlcal values for the North Sea (e.g.
Ronday, 1976), one finds that o may vary from 10 =4 sec -l , in cases
of sma11 currents almost reduced to res1dua1 at turnlng tloes and
weak w1nds,‘to 10"2 sec™! in cases of large t1da1 currents and
strong winds. The ‘time var1at1ons of the stress and velocxty
f1e1ds may .be characterxzed by a typ1ca1 "frequency

w v lO -4 sec l'” f .

. Thus:
e A e
dy T 7 3¢ v~ b

dy’
Success1ve dlfferentlatlons_with:respect‘to y shouid»thus,
if - anythlng, reduce the order of magnitnde; ‘The eigenvalues a
belng 1ncrea51ng functlons of n, the.factor‘q;q in eq. 48 will ra-
p1d1y become negllglbly small as n and g increase and one foresee
that in eqs. 48 ‘and 49, only a few terms of the sums will have to
be retainedr
With the observed values of o, the variable‘y reaches values
of order 10 in less than a tidal period. One can see then that the
1nf1uence of the initial condltlons rapidly vanishes '; the factor

e *ny. (1n eqs. 48 and 49) becoming exceedingly small.

Thus, after a short time, the essential contribution to the

velocity deviation will bey’

T _ T, _
G = — (s(&) -.S)'+ ;ﬁ (b(g) - ¥)

(50)

-1 3__ elft(sl Ts T bl Tb) £ (E) e ift
 ° ' t | cH @y 1 -

One can‘see.that-Ekman.veering affects only the third term (and the
other smaller terms of the sum) and is most effective when o is the
smallest (low current velocities, weak winds) as one would normally

:expect;

The veloclty dev1at10n given by eq. 50 must satlsfy the add1-
tlonal requlrement that the total veloclty be zero at the bottom,
i.e. '

_ﬁ.'.‘j‘._.«u” - | at £ = & | (51)

14
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Eq. 51 provides a relationship between Ty u and Ty oo Thus
the bottom stress can be parameterized in terms of the depth-mean
velocity and the wind stress and it can be substituted in the depth-
integrated two-dimensional model. The two-dimensional model can
compute the mean velocity, the surface elevation and subsequently
IR and ¢ . These in terms can be substituted in eq. 50 to yield

the vertical profile of the velocity.

The only difficulty is that the solution 50 and the subsequent
parameterization of T, are not valid everywhere. In certain parts
of the North Sea, the non-linear terms A and B are not negligible.
They are howéver not dominant and in the "singular" regions they
can be included in the model by an iteration process : (i) a preli-
minary two-dimensional model where the bottom stress is paramete-
rized by eq. 51 or by eq. 1 (it will be shown in the next section
that it is indeed a very good approximation) can be run to compute
the components of the depth—-averaged velocity and their horizontal
gradients, (ii) eq. 50 can be used to express the depth-dependence
of the non linear terms, (iii) the combination of (i) and (ii) gives
A,B and if needed S as known functions of t, X1s %Xy and £ which may
be added as driving forces to eqs. 21 or 22, (iv) the process can

be repeated until a satisfactory convergence is obtained.

Tﬁus, one finally achieves a three-dimensional model of tides
and storm surges. The model is.the superposition of a depth-
infegrated two-dimensional model and a locally one dimensional model
where the variations of the eddy viscosity with depth is properly
taken into acgdunt, the bottom friction is parameterized without
excessive empiricism and the non-linear effects are taken into con-

sideration.

The inclusion of the non-linear terms and of a variablﬁ eddy
viscosity is, according to Cheng (Cheng et al 1976) a significant
improvement on former models devélbped'along the same line (e.g.
Heaps 1972, 1976, Foristall 1974, Cheng 1976),
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APPLICATION OF THE MODEL TO THE NORTH SEA

As pointed out befote, depth-integtated two-dimensional models
of tides and storm surges in the North Sea have been successfully
operated for many years (e.g. Nihoul and Ronday 1976). Before con-
sidering undeftaking a complete new simulation using the two-
dimensional model in parallel with eqs. 50 and 51, it has seemed in-
tetesting to apply the locally one-dimensional model at a certain
nunber'of grid points of the two-dimensional grid where one knew
from the denht—integrated model the mean velocity, the surface ele-

vation and ‘the. orderFOf magnitude of the non-linear terms and .where

'sufflClent exper1menta1 data were available to determ1ne the func-

t10na1 dependence of the eddy v1sc031ty on depth.

In;thls f1rst application, the selected grid points where the

calculatlon was made were chosen in regions where the non-linear

~terms were negllglble and the depth variation of the eddy viscosity

could satlsfactorlly be represented by a function of the type

T 78 o ~ | (52)

nwhlch has the advantage of allowing the solution of (37) in analy-

_t1ca1 form..

‘As,vln the existing.depth—integrated models, eq. | is used to
pafameterige.the bottom stress, eq. 51 is exploited in this approach
as.a test of consistency between the two-dimensional model at any
grid point and the one-dimensional depth-dependent model at the same

grid point.

The eigenfunctions and the eigenvalues corresponding to eq. 52

are found to be

in o+ )2, e - - (53)

th
]
~~

a. =n(2n+ 1) o (54)

4

n
where P2n denotes the Legendre polynomlals of even order.

Eq. 50 becomes
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‘T ’
-~ S
§=—=(41n2-2=-21n (2 - &)
] | ,
+ E% (2 - 2 1In 2 4+ 1n (2 - &) + 1n E) ‘ (55)
. 2 T :
-1 3 ife Ts ¥ by 5 .o 5 5y =i £t
+o 5p (e —r Gz e 7R e

where it is understood that £ runs from O to | everywhere except

in ln £ where its lower limit must be specifically set at Eo.

At £ =& ~ 0 , eq. 51 gives

0
_ Tg Ty
u -"-'-';ﬁ (2 - 2 1In 2) + SH (- 1n EO + 1ln 2 - 2) (56)
L5t it s TP cige
18 .3t : oH '
Hence
T o= ‘l:.s 2 ln .._.._2.-._. + & {ln e/ - N ln 2__:-___5.\
" gH 2 =k o &' %o : 2 J
: T+ 2 1 (57)
- =1 35 ift ‘s by 5 _ -ift
- O ) Tz 82 -8 e

Eq. 57 shows that the vertical profile of the velocity u is the
result of three contributions which may be related to the wind
stress,. the bottom stress and the effect of the Coriolis force com-

bined with the action of wind or bottom friction.

Taking 1n Ey = = 10 as a typical value (e.g. Ronday 1976), one

estimates

Ts 2
ol 2 I 2 - ¢ n 0.1 s

Tb 2—5 - Tb

;ﬁ.(ln 8lg, *+ 1n =—5—)

-l 3 (i ft sy 5 -

o 55 ¢ ) T2 2 £) N 0.3 B
T i 2 ..O'
oH 2 1“,2 - £

-1 3 ift by 5 _

o wl T wmm@te-o o,

T o
55 (In 8¢, + 1 255 -
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where w is, as before, a typical frequency of time variations
(w v 1074 sec™! & £).

i) In the case of strong winds (> 10 m/sec) and strong currents
(; Im/sec), T and T, are comparable (% 10°3 m2/sec"2), o
can be one order of magnitude larger than w , the essential
contribution is due to bottom friction, the direct effect of
the wind stress does not exceed some 10 Z of the former and
there is no noticeable Ekman veering. This will be a fortiori

true in the case of strong (tidal) currents and weak winds.

ii) In the case of strong winds but relatively moderate currents
related to residual and wind-induced circulations at slack
tide, the effects of wind and bottom friction may become
comparable. The Ekman veering will however remain rather li-

mited as the ratio w/o will presumably still be smaller than 1.

yoo
P
boe

N

In the cace of weak wind and

0N

mall eurrente (almnst reduced

to residuals at slack tide), (Ts N Ty n ]0-5) the essential
contribution remains related to the bottom stress, ¢ may be
comparable to w and both the wind stress and the Coriolis for-
ce can produce a 10 7 deviation of the vertical profile of

velocity.

Thus, in a shallow continental sea like the North Sea where
tides are omnipresent and can reach velocities of the order of
] m/sec or more, one expects that, during a substantial fraction
of the tidal period, Coriolis effects may be neglected and eq. 56
can be written, in first approximation,

T Ty

-— S
U’\';ﬁ-(z 21‘[\2)*‘& 1n£o+1n2 2) (58)

. . AN
Moreover, the numerical coefficient of the first term being
approximately 0.1 of the coefficient of the second term, eq. 24

may be written

2 2 O‘HIE' K2
(cH)© = x ITbI Y TIn E, * In 2 -2 (39)

or



D =

B §_0.7 m sec
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|a] «?
MY TIwE, v in 2 - 2 : (60)

“Combining with eq. 58, one gets
v - mot  + D |y - (61)

Ty

or, equivalently

v om0l A CIA
-whefe,
. 2 - 2 1n 2
n - 1n»go + 1n 2 7 " 0.07
2 o : -
K 10 3

—Ing, +nz-27" 2.1

Cfor ln E_ ~ - 10

o
Eq. 61 is identical with the empiricail formula i. Moreover
the numerical values of the coefficients m and D predicted by the
model appear in close agreement with the empiricalbcoefficients used
inssuccess‘in practice (m ~0.1 , D~ 2 10;3., Ronday 1976)
~ The empiricaliboﬁtom friction law 1 would thus seem to be va-
lid except perhaps for a fractlon of time at tide reversal. Whether:

this is sufficient to affect 31gn1f1cant1y the predlctlons of a

.‘depth 1ntegrated model can be Judged by the test of consistency :

the mean velocity u calculated by the depth-lntegrated model, using:

eq. 1, must be the same as'thefmean‘velocity"a givenbby eq. 56.

This proved to be the case at all points where the calculation

.was made. Only a slight difference was. observed and thls occured as

expected at tide reversal

Figures 1-5 give, 1in illustration, the results of the computa-=
tion at the point 52°30'N', 3°50'E under strong wind conditions
where the depth-integrated model provided the followlng estimates

H ~ 28 m .~; Lz .&-1.8 10°3 o

wse

‘D~ 2.2 1073 - ; - ”Is" < 2 1074 m2sec-2
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Figs.liand 2 show the time evolution over half a tidal period
of the vertical profiles of, respectively, the northern and the
eastern components of the horizontal veloclty vector. The curves

from left. to right are vertical profiles computed at one hour in-

'terval

Figs. 3 and 4 show the same components at tide reversal. The
curves from left to rlght are vertical proflles computed at a 20
mlnutes 1nterva1. One .can see, oOn Flg. 3 the 1nd1cat10n of a re-

verse flow in the bottom layer.

22

’ F1g 5 shows a comparlson between the mean . velocxty computed by

eq.’ 56 and by the two-dlmen51ona1 depth-1ntegrated model. A very

good-agreement is found except perhaps at minimum flow .velotity

'aSSOciated'withptide reversal.
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FIGURE

Fig.
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Fig.
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CAPTIONS

Time evolution over half a tidal‘period of the vertical
profile of the Northern component of the horizontal
velocity vector at the point 52°30'North, 3°50'East.
The curves from left to_right are vertical profiles

computed at one hour interval,

Time evolution over half a tidal period of the vertical
profile of the Eastern component of the horizontal
velocity vector at the point 52°30'North, 3°50'East.
The ‘curves from left to right are vertical profiles

computed at one hour interval.

Vertical profile of the Northern component of the hori-
zontal velocity vector at tide reversal. The curves:
from left to right are vertical profiles computed at a

20 minutes interval.

Vertical profile of the Eastern component of the hori-
zontal velocity vector at tide reversal. The curves
from left to right are vertical profiles computed at a

20 minutes ‘interval,

Comp%rison between the méan-velocity computed by the -
deptﬁ—integrated two-dimensional model (dashed line)
and by the locally one dimensional depth-dependent
model subject to the condition of zéro velocity at the
bottom (full line). |



